

BJT Circuits at DC

Kizito NKURIKIYEYEZU, Ph.D.

FIG 1. Simplified Models for the Operation of the BJT in DC Circuits

BJT DC analysis steps

Use the following steps when analyzing BJT circuits with DC voltages:
11 Assume that the transistor is operating in active mode.
[2 Determine $I_{C}, I_{B}, V_{C E}$ and $V_{B E}$ using the active mode model.
3 Check for consistency of results with active-mode operation such as $V_{C E}>V_{\text {CEsat }}$.
4 If it is satisfied, the analysis is over.
5 If not, assume saturation mode and repeat the analysis like active mode.
This analysis is mainly used to identify the operating point.

Example I

In Fig. 2, if $\beta=100$ and $V_{B E}=0.7 \mathrm{~V}$, which mode is the transistor operating in?
■ Using Kirchhoff's Voltage Law (KVL) on the base-emitter loop (Equation (1))

$$
\begin{equation*}
4 V=V_{B E}+3.3 \mathrm{k} \Omega I_{E} \tag{1}
\end{equation*}
$$

- Solving Equation (1) gives $I_{E}=1 \mathrm{~mA}$
- The base current I_{B} is calculated from its relationship to the emitter current

$$
\begin{equation*}
I_{B}=\frac{I_{E}}{\beta+1}=9.9 \mu \mathrm{~A} \tag{2}
\end{equation*}
$$

FIG 2. Example I

- The collector current I_{C} is thus

Example I

- To know the mode of operation of the transistors, we need to know $V_{C E}$.
- $V_{C E}$ is obtained by applying KVL on the CE loop as shown in Equation (4):
$V_{C E}=10 \mathrm{~V}-4.7 \mathrm{kV} I_{C}-3.3 \mathrm{kV} I_{E}=2.047$
- Since $V_{C E}>V_{C E s a t}$, it is operating in active mode.

NPN Connon=Emitter circuit

- The collector current is given Equation (6)

$$
\begin{equation*}
I_{C}=\beta I_{B} \tag{6}
\end{equation*}
$$

■ Kirchhoff's voltage law allows to compute $V_{C C}$ and $V_{C E}$

$$
\begin{align*}
& V_{C C}=I_{C} R_{C}+V_{C E} \tag{7}\\
& V_{C E}=V_{C C}-I_{C} R_{C} \tag{8}
\end{align*}
$$

- Equation (8) implicitly assumes that
$V_{\text {NKURIKIVEYEZU Ph. }}>V_{\text {RE }}(a n)-w h i c h$
Kizito NKURIKIYEYEZU, Ph.D. BJT Circuits at DC
G. Common emitter-Transistor equivalent circuit is shown within the dotted lines with piecewise linear ransistor parameters.

NPN Common-Emitter circuit

- We will assume that the $B E J$ is forward biased, so the voltage drop across that junction is the cut-in or turn-on voltage $V_{B E}(o n)$.
- The base current is given in Equation (5)

$$
\begin{equation*}
I_{B}=\frac{V_{B B}-V_{B E}(\text { on })}{R_{B}} \tag{5}
\end{equation*}
$$

- Equation (5) implies that $V_{B B}>V_{B E}($ on $)$-which means that $I_{B}>0$.
Otherwise, $V_{B R}<V_{B E}(o n)$,
FIG 4. Common emitter-Transistor equivalent circuit is shown within the dotted lines with piecewise linear transistor parameters.

NPN Common-Emitter circuit

- The power dissipated in the transistor is given by

Equation (9)

$$
\begin{equation*}
P_{T}=I_{B} V_{B E}(o n)+I_{C} V_{C E} \tag{9}
\end{equation*}
$$

- However, in most cases $I_{C} \gg I_{B}$ and $V_{C E}>V_{B E}(o n)$. Thus, Equation (9) can be simplified as shown in Equation (10)

$$
P_{T} \approx I_{C} V_{C E}
$$

(a) npn transistor common-emitter

(b) dc equivalent circuit.

FIG 6. Common emitter-Transistor equivalent circuit is shown within the dotted lines with piecewise linear transistor parameters.

Example II

Calculate the base, collector, emitter currents, the $V_{C E}$ voltage and the transistor power dissipation for the common-emitter circuit shown in Fig. 7. Assume $\beta=200$ and $V_{B E}(o n)=0.7 \mathrm{~V}$

- The base current is found as

$$
\begin{align*}
I_{B} & =\frac{V_{B B}-V_{B E}(o n)}{R_{B}} \\
& =\frac{4 V-0.7 V}{220 k} \tag{11}\\
& =15 \mu \mathrm{~A}
\end{align*}
$$

- The collector current is

$$
\begin{equation*}
I_{C}=\beta I_{B}=200 \times 15 \mu \mathrm{~A}=3 \mathrm{~mA} \tag{12}
\end{equation*}
$$

- The emitter current is

$$
\begin{equation*}
I_{E}=(1+\beta) I_{B}=3.02 \mathrm{~mA} \tag{13}
\end{equation*}
$$

- The collector-emitter voltage is

$$
\begin{equation*}
V_{C E}=V_{C C}-I_{C} R_{C}=4 V \tag{14}
\end{equation*}
$$

FIG 8. Example 2

- The power dissipated is

$$
\begin{align*}
P_{T} & =I_{B} V_{B E}(o n)+I_{C} V_{C E} \\
& =0.015 \times 0.7+3 \times 4 \\
& =12 \mathrm{~mW} \tag{15}
\end{align*}
$$

- Since $V_{B B}>V_{B E}(o n)$ and

Kizito NKURIKIYEYEZU, Ph.D.

PNP Common-Emitter circuit

- In Fig. 9, the emitter is at ground potential, which means that the polarities of the $V_{B B}$ and $V_{C C}$ power supplies must be reversed compared to those in the npn circuit.
- The analysis proceeds exactly as before, and we can write:

$$
\begin{equation*}
I_{B}=\frac{V_{B} B-V_{E B}(o n)}{R_{B}} \tag{16}
\end{equation*}
$$

$I_{C}=\beta I_{B}$

FIG 9. Common emitter-Transistor equivalent circuit is shown within the dotted lines with piecewise linear (17) transistor parameters.

The end

